PRINCIPAL

MAPA WEB

VENATOR LIBRIS

FAVORITOS DE 10 EN 10

IMAGENES

ENLACES

BLOG

                  

 

 

Buscar en:

Google

Wikipedia

Real Academia

 

 

 

 

Logo de letraherido.com:

 

 

 

 

 

ASTRONOMÍA OBSERVACIONAL

 

ASTROMETRÍA Y ASTRONOMÍA DE POSICIÓN

ASTRONOMÍA ÓPTICA O VISIBLE

RADIOASTRONOMÍA

ASTRONOMÍA INFRARROJA

ASTRONOMÍA ULTRAVIOLETA

ASTRONOMÍA DE RAYOS X

ASTRONOMÍA DE RAYOS GAMMA

ASTROMETRÍA Y ASTRONOMÍA DE POSICIÓN

 

La Astrometría o Astronomía de posición es la parte de la astronomía que se encarga de medir y estudiar la posición  paralajes y el movimiento propio de los astros. Es una disciplina muy antigua, tanto como la astronomía.

A pesar de que casi son sinónimos, consideraremos la astrometría como la parte experimental o técnica que permite medir la posición de los astros y los instrumentos que la hacen posible, mientras la astronomía de posición usa la posición de los astros para elaborar un modelo de su movimiento o definir los conceptos que se usan. Sería pues la parte teórica. Hemos englobado las dos partes en la misma categoría. Esta parte de la astronomía no es obsoleta porque la teoría forma parte de los rudimentos de la ciencia mientras la práctica intenta medir con mucha precisión la posición de los astros usando medios modernos como el satélite Hipparcos.

Satélite astrométrico Hipparcos de la ESA

La astronomía de posición tiene pues por objeto situar en la esfera celeste la posición de los astros midiendo determinados ángulos respecto a unos planos fundamentales.

Se encarga pues de definir los distintos tipos de coordenadas astronómicas y sus relaciones. También se encarga de definir conceptos fundamentales de la astronomía.

Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. También estudia el movimiento diurno y el anual del Sol y las estrellas. Son tareas fundamentales de la misma la determinación de la hora y la determinación para la navegación de las coordenadas geográficas.

Para ubicarse en el cielo, se agruparon las estrellas que se ven desde la Tierra en constelaciones. Así, continuamente se desarrollan mapas (cilíndricos o cenitales) con su propia nomenclatura astronómica para localizar las estrellas conocidas y agregar los últimos descubrimientos.

Aparte de orientarse en la Tierra a través de las estrellas, la astronomía estudia el movimiento de los objetos en la esfera celeste, para ello se utilizan diversos sistemas de coordenadas astronómicas. Estos toman como referencia parejas de círculos máximos distintos midiendo así determinados ángulos respecto a estos planos fundamentales. Estos sistemas son principalmente:

·         Sistema altacimutal, u horizontal que toma como referencias el horizonte celeste y el meridiano del lugar.

·         Sistemas horario y ecuatorial, que tienen de referencia el ecuador celeste, pero el primer sistema adopta como segundo círculo de referencia el meridiano del lugar mientras que el segundo se refiere al círculo horario (círculo que pasa por los polos celestes).

·         Sistema eclíptico, que se utiliza normalmente para describir el movimiento de los planetas y calcular los eclipses; los círculos de referencia son la eclíptica y el círculo de longitud que pasa por los polos de la eclíptica y el punto.

·         Sistema galáctico, se utiliza en estadística estelar para describir movimientos y posiciones de cuerpos galácticos. Los círculos principales son la intersección del plano ecuatorial galáctico con la esfera celeste y el círculo máximo que pasa por los polos de la Vía Láctea y el ápice del Sol (punto de la esfera celeste donde se dirige el movimiento solar).

La astronomía de posición es la rama más antigua de la astronomía. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. Para estudiar el movimiento de los planetas se introduce el movimiento medio diario que es lo que avanzaría en la órbita cada día suponiendo movimiento uniforme. La astronomía de posición también estudia el movimiento diurno y el movimiento anual del Sol. Son tareas fundamentales de la misma la determinación de la hora y para la navegación el cálculo de las coordenadas geográficas. Para la determinación del tiempo se usa el tiempo de efemérides ó también el tiempo solar medio que está relacionado con el tiempo local. El tiempo local en Greenwich se conoce como Tiempo Universal.

Ecliptica

La distancia a la que están los astros de la Tierra en el de universo se mide en unidades astronómicas, años luz o pársecs. Conociendo el movimiento propio de las estrellas, es decir lo que se mueve cada siglo sobre la bóveda celeste se puede predecir la situación aproximada de las estrellas en el futuro y calcular su ubicación en el pasado viendo cómo evolucionan con el tiempo la forma de las constelaciones.

Constelacion

 

ASTRONOMÍA VISIBLE

 

Espectro visible

La astronomía visible es el área de la astronomía que para estudiar el universo usa luz en una pequeña región del espectro electromagnético, coincidente en su mayor parte con la que el ojo humano puede detectar.

Es la parte más antigua de la astronomía, ya que recién en el siglo XX comenzaron a ser usadas en la investigación astronómica regiones del espectro electromagnético diferentes a la visible.

La principal herramienta que utiliza es el telescopio. El telescopio fue el primer instrumento de observación del cielo. Aunque su invención se le atribuye a Hans Lippershey, el primero en utilizar este invento para la astronomía fue Galileo Galilei quien decidió construirse él mismo uno. Desde aquel momento, los avances en este instrumento han sido muy grandes como mejores lentes y sistemas avanzados de posicionamiento.

Telescopio de Galileo

Actualmente, el telescopio más grande del mundo se llama Very Large Telescope y se encuentra en el observatorio Paranal, al norte de Chile. Consiste en cuatro telescopios ópticos reflectores que se conjugan para realizar observaciones de gran resolución.

Hasta fines del siglo XIX el único detector usado era el ojo humano, pero el advenimiento de la fotografía cambió eso, permitiendo un aumento enorme de la sensibilidad de las observaciones. En vez de la fracción de segundo en que el ojo recibe fotones antes de mandar la señal al cerebro, una placa fotográfica podía ser expuesta durante horas.

La placa fotográfica fue usada tanto para detectar imágenes como espectros. En el segundo caso, un espectrógrafo separa la luz que llega al foco del telescopio por longitud de onda, y el resultado queda registrado en la placa fotográfica.

En las últimas décadas del siglo XX, la placa fotográfica fue gradualmente reemplazada por detectores electrónicos, el más útil y ampliamente usado de ellos el CCD.

Sensor CCD

A pesar de la apertura de nuevas regiones del espectro a la investigación astronómica, la astronomía óptica sigue siendo un área inmensamente activa.

 

 

RADIOASTRONOMÍA

Very large Array

 

Curso de Radioastronomía

 

La radioastronomía es la rama de la astronomía que estudia los objetos celestes y los fenómenos astrofísicos midiendo su emisión de radiación electromagnética en la región de radio del espectro. Las ondas de radio tienen una longitud de onda mayor que la de la luz visible. En la radioastronomía, para poder recibir buenas señales, se deben utilizar grandes antenas, o grupos de antenas más pequeñas trabajando en paralelo. La mayoría de los radiotelescopios utilizan una antena parabólica para amplificar las ondas, y así obtener una buena lectura de estas. Esto permite a los astrónomos observar el espectro de radio de una región del cielo. La radioastronomía es un área relativamente nueva de la investigación astronómica, que todavía tiene mucho por descubrir.

En la actualidad, existen gigantescos radiotelescopios, permitiendo observaciones de una resolución imposible en otras Longitudes de onda. Entre los problemas que la radioastronomía ayuda a estudiar, se encuentran la formación estelar, las galaxias activas, la cosmología, etc.

 

Historia

Una de las primeras investigaciones de ondas de radio de origen extraterrestre fue llevada a cabo por Karl Guthe Jansky, un ingeniero de Bell Telephone Laboratories, en los comienzos de 1930. El primer objeto detectado fue el centro de la Vía Láctea, seguido por el Sol. Estos primeros descubrimientos fueron confirmados por Grote Reber en 1938. Después de la Segunda Guerra Mundial, en Europa y los Estados Unidos, los astrónomos desarrollaron importantes mejoras en la radioastronomía, y el campo de la radioastronomía comenzó a florecer.

Uno de los desarrollos más notables vino en 1946 con la introducción de la radio interferometría por Martin Ryle de Cavendish Astrophysics Group en Cambridge ( quien obtuvo el Premio Nobel por esto, y su trabajo de aperture synthesis), también el espejo interferómetro de Lloyd desarrollado independientemente por Joseph Pawsey's en 1946 en la Universidad de Sydney. Dos temas, uno astronómico y uno técnico, dominaron la investigación en Cambridge desde fines de 1940 por más de treinta años. ¿Cuál era la naturaleza de las fuentes de radio discretas, o "estrellas de radio"? ¿Dónde estaban, cuáles eran ellas, ¿cuáles eran sus características?, ¿cuántas existían ahí afuera?, ¿cómo funcionaban y cuál era su significación en el universo? De importancia paralela era el rompecabezas de cómo idear las nuevas clases de radiotelescopio que aclararían estas preguntas astronómicas.

Interferometro

Avances

La radioastronomía ha llevado a un importante incremento en el conocimiento astronómico, particularmente con el descubrimiento de muchas clases de nuevos objetos, incluyendo los pulsars, quásars y las galaxias activas. Esto es debido a que la radioastronomía nos permite ver cosas que no son posibles de detectar en la astronomía óptica. Tales objetos representas algunos de los procesos físicos más extremos y energéticos en el universo.

La radioastronomía es también, en parte responsable por la idea de que la materia oscura es una importante componente de nuestro universo; las mediciones de radio de la rotación de las galaxias sugiere que hay muchas más masa en las galaxias que la que ha sido observada directamente. La radiación de fondo de microondas (CMB) fue detectada por primera vez utilizando radiotelescopios. Los radiotelescopios también han sido utilizados para investigar objetos mucho más cercanos a la tierra, incluyendo observaciones del Sol, la actividad solar y mapeos por radar del los planetas del Sistema Solar.

Radiacion fondo de microondas

Los radiotelescopios pueden ser ahora encontrados por todo el mundo. Radiotelescopios muy distanciados unos de otros, son utilizados frecuentemente en combinación utilizando una técnica llamada interferometría para obtener observaciones de alta resolución que no pueden ser obtenidas utilizando un solo receptor. Inicialmente radiotelescopios distanciados por unos pocos kilómetros eran combinados usando interferometría, pero a partir de 1970, radiotelescopios alrededor de todo el mundo (incluso orbitando la tierra) son combinados para realizar mapeos interferómetros de gran tamaño (Very Long Baseline Interferometry (VLBI)).

 

Formas de emisión de ondas de radio

La emisión en radio se puede presentar en dos formas: radio continuo y líneas espectrales. En el radio continuo la emisión se extiende en una región ancha del espectro electromagnético mientras que las líneas espectrales se hayan centradas en una frecuencia específica. Estas formas dependen del origen físico de la radiación.

1.    Radiocontinuo

En las galaxias el radio continuo proviene de tres mecanismos: radiación sincrotrón, emisión libre-libre y emisión térmica. La radiación sincrotrón es emitida en su mayor parte por electrones relativistas confinados en los campos magnéticos de las galaxias. También una parte de esta emisión proviene directamente de los remanentes de supernova, los núcleos de galaxias activas, los pulsars y los microquasares. La emisión libre-libre o bremsstrahlung proviene en su mayor parte de las regiones de formación estelar mientras que, la emisión térmica tiene su origen a estas longitudes de onda en cuerpos relativamente fríos, en su mayoría el polvo del medio interestelar.

Resto de supernova de kepler

A escalas más pequeñas las estrellas más potentes y cercanas pueden ser observadas en radio continuo, en particular nuestro Sol. Y, en escalas mayores la principal emisión en radio continuo es la radiación de fondo de microondas.

2.    Líneas espectrales

Las diferentes especies químicas que se hallan en el universo y en sus objetos emiten o absorben luz en diferentes líneas espectrales, siguiendo las leyes de la mecánica cuántica. En región de radio del espectro electromagnético se suelen encontrar líneas de transición, rotacionales y vibracionales de los átomos y moléculas más comunes en el universo. Estas líneas suelen observarse en emisión pero también pueden observarse en absorción sobre un fondo de radio continuo. Algunas de estas líneas son:

·         La línea de HI que proviene de la transición superfina del hidrógeno atómico (transición entre estados en que el espín del electrón y el protón es paralelo y antiparalelo), centrada en 1.4 GHz. Esta línea traza el gas atómico que es la principal reserva de gas en las galaxias.

·         Las líneas rotacionales del CO. Se encuentran en la zona milimétrica del espectro y son los principales trazadores del contenido de hidrógeno molecular al estar el contenido de CO íntimamente asociado al de H2.

También se observan otras líneas como el NH3, OH, HCN, etc, que trazan distintas propiedades físicas y químicas de las distintas regiones y objetos del universo.

Fuentes de emisión de ondas de radio

Pulsar nebulosa cangrejo

·         Los núcleos de galaxias activas y los pulsars poseen chorros de partículas cargadas que emiten radiación de sincrotrón.

·         La radiación de fondo de microondas es emisión de la radio de cuerpo negro.

·         Los remanentes de supernova emiten radiación difusa en radio.

 

ASTRONOMÍA INFRARROJA

La astronomía infrarroja consiste en la observación y estudio de fuentes astronómicas a partir de la radiación infrarroja que emiten.

Aunque en general se denomina infrarroja a la radiación electromagnética de longitud de onda más larga que la de la luz visible (400-700 nm) y más corta que la de la radiación de terahertzios (100-1000 μm) o las microondas (1-1000 mm) , en astronomía suele considerarse como infrarrojo el rango entre 1 y 1000 micrómetros.

 

Este rango se subdivide a su vez en 3 o 4 intervalos:

·         Infrarrojo cercano de 1 a 5 μm aproximadamente

·         Infrarrojo medio de 5 a 25-40 μm

·         Infrarrojo lejano de 25-40 a 200-350 μm

·         Submilimétrico de 200-350 μm a 1 mm (que algunos incluyen en el rango de las radioondas)

Esta subdivisión tiene su razón de ser en los diferentes fenómenos físicos que son observables en cada uno de estos rangos, así como en las distintas técnicas de observación y tecnología de detectores empleados en cada uno de ellos.

La atmósfera terrestre absorbe la radiación procedente de fuentes astronómicas en casi todo el espectro infrarrojo, exceptuando unas cuantas ventanas de transmisión atmosférica en las que transmite parcialmente, y además emite intensamente en el infrarrojo, por lo que la observación en el infrarrojo desde tierra requiere de técnicas que permitan eliminar la contribución de la atmósfera.

Debido a que la radiación infrarroja es menos absorbida o desviada por el polvo cósmico que la radiación de longitud de onda más corta, se puede observar en infrarrojo regiones que quedan ocultas por el polvo en luz visible o ultravioleta.

Polvo cosmico

Entre las regiones que son más efectivamente estudiadas en el infrarrojo se cuentan:

·         Centro galáctico

·         Regiones de formación estelar

 

Centro galáctico

 

Las observaciones Infrarrojas revelan los estados fríos de la materia

Los objetos sólidos en el espacio -- desde el tamaño de un grano de polvo interestelar (de menos de una micra) hasta los planetas gigantes -- tienen temperaturas que van de 3 a 1500 kelvins (K). La mayoría de la energía irradiada por objetos en este rango de temperaturas se encuentra en el infrarrojo. Las observaciones infrarrojas son por lo tanto de particular importancia en el estudio de medios a baja temperatura, como son las nubes interestelares con mucho polvo, donde las estrellas se están formando, así como las superficies heladas de los satélites planetarios y los asteroides.

Las observaciones Infrarrojas exploran el Universo Oculto

Los granos de polvo cósmico oscurecen partes del Universo, bloqueando la luz que llega de regiones críticas. Este polvo se vuelve transparente en el cercano infrarrojo, donde los observadores pueden estudiar regiones ópticamente invisibles como el centro de nuestra Galaxia (y de otras galaxias) y densas nubes donde las estrellas y los planetas están naciendo. Para muchos objetos, incluyendo las estrellas en regiones con mucho polvo, los núcleos galácticos activos e incluso galaxias enteras, la radiación visible absorbida por el polvo y re-emitida en el infrarrojo constituye la mayor parte de su luminosidad.

Spitzer

Las observaciones Infrarrojas proporcionan acceso a muchas líneas espectroscópicas

Las bandas de emisión y absorción de virtualmente todas las moléculas y los sólidos se encuentran en el infrarrojo, donde pueden usarse para estudiar las condiciones físicas y químicas de ambientes relativamente fríos. Muchos átomos e iones tienen líneas espectrales en el infrarrojo, que pueden usarse para estudiar las atmósferas estelares y el gas interestelar, explorando regiones que son demasiado frías o con demasiado polvo para ser estudiadas en luz visible.

Las observaciones Infrarrojas estudian el Universo Joven

El corrimiento al rojo cósmico, que resulta de la expansión general de Universo, desplaza la energía inexorablemente hacia longitudes de onda largas, siendo el corrimiento proporcional a la distancia del objeto. Debido a la velocidad finita de la luz, los objetos con un gran corrimiento al rojo se observan según eran cuando el Universo era mucho más joven. Como resultado de la expansión del Universo, la mayoría de la radiación óptica y ultravioleta emitida por las estrellas, las galaxias y los quásares desde el principio de los tiempos, ahora se encuentran en el infrarrojo. Cómo y cuándo los primeros objetos del Universo se formaron será esclarecido en gran parte gracias a las observaciones infrarrojas.

Webb

Observatorios Espaciales

Debido a que la transmisión de la atmósfera en el infrarrojo está limitada a algunas ventanas, e incluso en ellas, la transparencia depende de la cantidad de vapor de agua por la que tiene que pasar la luz, los telescopios para observar en el infrarrojo se deben ubicar en lugares secos y a gran altura.

Entre los lugares donde estas condiciones se cumplen se cuenta Mauna Kea, en Hawaii, Estados Unidos, donde existe gran cantidad de telescopios y Paranal en la región de Antofagasta, Chile, sitio del VLT, Very Large Telescope de la ESO, Observatorio Europeo Austral.

Aún mejor es usar observatorios espaciales, que pueden ver en regiones en que la atmósfera terrestre es completamente opaca. Entre las misiones pasadas más importantes se encuentran el IRAS y el Observatorio Espacial Infrarrojo. Hoy por hoy destacan la cámara NICMOS en el Telescopio Espacial Hubble, y el Telescopio Espacial Spitzer, lanzado en 2003. En los próximos años, está previsto lanzar el Telescopio Espacial James Webb y el Observatorio Espacial Herschel, ambos centrados en el estudio del infrarrojo.

Herschel

 

ASTRONOMÍA ULTRAVIOLETA

La astronomía por rayos ultravioletas utiliza una radiación electromagnética cuyas longitudes de onda van aproximadamente desde los 400 nm, el límite de la luz violeta, hasta los 15 nm, donde empiezan los rayos X. La radiación ultravioleta puede producirse artificialmente mediante lámparas de arco; la de origen natural proviene principalmente del Sol.

La astronomía ultravioleta se ha practicado desde comienzos de la década de 1960, con la ayuda de detectores montados en satélites artificiales que proporcionan datos sobre objetos estelares inaccesibles desde la superficie de la Tierra. Uno de estos satélites es el Explorador Ultravioleta Internacional, lanzado en 1978.

Iue

La atmósfera de la Tierra impide que la mayor parte de la radiación ultravioleta que proviene del espacio exterior llegue a su superficie. Sin embargo, la luz ultravioleta con una longitud de onda entre 410 y 300 nm, llamada 'región ultravioleta cercana' puede alcanzar la superficie terrestre a través de la atmósfera. La radiación ultravioleta con una longitud de onda entre 300 y 10 nm solamente se puede detectar mediante instrumentos de observación situados por encima de la atmósfera de la Tierra. Estos instrumentos de observación incluyen telescopios y satélites artificiales en el espacio.

Un telescopio enviado a una altitud de 40 km, es decir, casi por encima de la capa de ozono de la atmósfera, puede observar la luz ultravioleta de hasta unos 200 nm. Para observar longitudes de onda menores de 200 nm, el dispositivo de observación tiene que estar colocado por encima de la atmósfera terrestre. Los telescopios situados en globos o pequeños cohetes son de gran utilidad, pero su tiempo de observación se ve limitado a unos cuantos minutos en el caso de un cohete y a algunas horas cuando se trata de un globo. Desde 1968 la mayor parte de las observaciones del ultravioleta medio y lejano se han efectuado desde telescopios situados en la órbita de la Tierra. (La región ultravioleta entre 300 y 200 nm se conoce como el 'ultravioleta medio'. El 'ultravioleta lejano' se encuentra entre 200 nm y aproximadamente 91 nm). Algunos de los satélites artificiales puestos en órbita para detectar el ultravioleta son: el Observatorio Astronómico en Órbita, el Observatorio Astronómico Copérnico, el Satélite Europeo TD-1, el Satélite Astronómico de los Países Bajos, el Observatorio Astronómico UIE, el telescopio espacial Hubble y, más recientemente, el Explorador de la Evolución de Galaxias (GALEX).

Vista ultravioleta de saturno

El Explorador Ultravioleta Extremo exploró gran parte de la región ultravioleta desde 91 hasta 10 nm, llamada el ultravioleta extremo, zona difícil de detectar debido a la continua absorción de fotones causada por la ionización de los átomos de hidrógeno y helio interestelares.

 

ASTRONOMÍA DE RAYOS X

 

La astronomía de rayos-X es una rama de la astronomía, que estudia la emisión de rayos-x de los objetos celestes. La radiación de rayos-x es absorbida por la atmósfera, así que los instrumentos para captar rayos-x deben estar a gran altitud, en el pasado se utilizaban en globos y cohetes sonda. En la actualidad la astronomía de rayos-x es parte de la investigación espacial y los observatorios de rayos-x se instalan en satélites.

La emisión de rayos-x se cree que procede de fuentes que contienen gas muy caliente a varios millones de Kelvins, en general en objetos cuyos átomos o electrones tienen una gran energía. El descubrimiento de la primera fuente de rayos-x procedente del espacio en 1962 se convirtió en una sorpresa. Esa fuente se llamada Scorpio X-1, en la constelación de Escorpio en dirección al centro de la Vía Láctea. Por este descubrimiento Riccardo Giacconi obtuvo el Premio Nobel de Física en 2002. Más tarde se descubrió que la emisión de rayos-x de este objeto es 10.000 veces mayor de lo captado en la emisión óptica. Esto es, el total de energía emitida por esta fuente de rayos-x es 100.000 veces mayor que la emitida por el Sol en todas las longitudes de onda. Se sabe que esas fuentes de rayos-x son remanentes estelares, como estrellas de neutrones o agujeros negros. La fuente de la energía está en la energía gravitacional, que procede del gas calentado por la caída en el campo gravitacional de esos objetos.

Wolter

En la actualidad se conocen miles de fuentes de rayos-x. Es más, parece que el espacio entre las galaxias de los cúmulos galácticos está repleto de gas muy caliente, pero poco denso, a una temperatura de 100 millones de grados kelvin. La cantidad total de gas es de cinco a diez veces la masa total de las galaxias visibles.

 

ASTRONOMÍA DE RAYOS GAMMA

La astronomía de rayos gamma se define como el estudio astronómico del cosmos a través de los rayos gamma (fotones de energía superior a los rayos X). La atmósfera terrestre protege al planeta de la radiación gamma, por ello las primeras observaciones astronómicas de los fotones gamma tuvieron que realizarse mediante globos sonda y cohetes (para tiempos de observación muy cortos) antes de que se fabricaran los primeros satélites artificiales.

Swift

La radiación gamma es extremadamente potente, su detección requiere aparatos de grandes dimensiones, formados por una serie de gruesas placas metálicas. Su funcionamiento guarda ciertas similitudes con el del contador Geiger.

Los rayos gamma son radiaciones emitidas por objetos celestes que se encuentran en un proceso energético extremadamente violento. Algunos astros despiden brotes de rayos gamma o también llamados BRGs. Se trata de los fenómenos físicos más luminosos del universo produciendo una gran cantidad de energía en haces breves de rayos que pueden durar desde unos segundos hasta unas pocas horas. La explicación de estos fenómenos es aún objeto de controversia.

Los fenómenos emisores de rayos gamma son frecuentemente explosiones de supernovas, su estudio también intenta clarificar el origen de la primera explosión del universo o big bang.

La astronomía de rayos gamma es a veces llamada la del universo "violento" debido a que las fuentes de rayos gamma son, por lo general, explosiones, colisiones a gran velocidad, chorros de partículas, etc.

Historia

Mucho antes de que los experimentos detectaran la emisión de rayos gamma procedente de fuentes cósmicas, los científicos ya suponían que el universo producía este tipo de fotones. El trabajo realizado por Eugene Feenberg y H. Primakoff en 1948, Sachio Hayakawa y I.B. Hutchinson en 1952, y, especialmente, Philip Morrison en 1958, deja constancia de que un gran número de diferentes procesos que están produciéndose en el universo provocan la emisión de rayos gamma. Estos procesos incluyen interacciones de rayos cósmicos con gas interestelar, supernovas e interacciones de electrones con campos magnéticos. Sin embargo, no es hasta la década de los 60 cuando se desarrolla la capacidad real de detectar este tipo de emisiones.

Fermi

El Observatorio de Rayos Gamma Compton -ya inexistente- fue el segundo de los llamados grandes observatorios espaciales (detrás del telescopio espacial Hubble) y fue el primer observatorio a gran escala de estos fenómenos. Ha sido reemplazado recientemente por el satélite Fermi. El observatorio orbital INTEGRAL observa el cielo en el rango de los rayos gamma blandos o rayos X duros.

CGRO

A energías por encima de unas decenas de GeV, los rayos gamma sólo se pueden observar desde el suelo usando los llamados telescopios Cherenkov como MAGIC. A estas energías el universo también puede estudiarse usando partículas distintas a los fotones, tales como los rayos cósmicos o los neutrinos. Es el campo conocido como Física de Astropartículas.

Magic

 

 

 

 

 

     

    Actualizado el 25/11/2009          Eres el visitante número                ¡En serio! Eres el número         

ip-location